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I.  INTRODUCTION 

The principal purpose of the Special Focus Research Program, later termed 

Accelerated Research Initiative Program, in Ship Hydrodynamics at the Insti- 

tute of Hydraulic Research (IIHR) was to address a number of very basic fluid 

flow phenomena which are peculiar to ship hydrodynamics and which remained 

poorly understood. Among the topics identified for special attention were 

flow phenomena at the bow, the effects of the free surface on the hull boun- 

dary layer, and the complex turbulent shear flow over the stern and in the 

wake.  The results of the research in these areas are summarized below. 

II.  RESEARCH HIGHLIGHTS 

A.  Irrotational Flow and Surface Waves 

Forces and moments on bodies 

Several contributions were made in continuation of research previously 

supported by ONR under a separate contract.  Among these are the following: 

a) A previously published paper (Landweber and Miloh, "Unsteady Lagally 

Theorem for Multipoles and Deformable Bodies," J.Fluid Mech., Vol. 

96, Part 1, 1980) did not include the derivations of residues of 

multipole integrals required in the treatment. These were presented 

at a 1985 Symposium a the University of Michigan, in Honor of 

Professor C.S. Yih, and published as an IIHR Report [1]. 

b) A new, asjonptotic formula for the force on a body in a weakly nonuni- 

form flow has been derived. The result, expressed in terms of added 

masses, is similar to the one-dimensional formulas of G.I. Taylor and 

J.N. Newman for steady, one-dimensional motion, but Is generalized to 

Include body rotation and unsteady flow. This work has not yet been 

published. 

c) Formulas, expressing added masses and added moments of inertia of a 

single body, moving in an otherwise undisturbed fluid in terms of 

singularities within the body, have been extended to the case of a 

pair of bodies.  A paper on this subject has been prepared [2]. 



2. Wave-trapping due to a porous plate 

The reflection and transmission of small-amplitude surface waves by a 

vertical porous plate fixed in an infinitely long channel of constant depth, 

and the wave-trapping by a thin porous plate fixed near the end of a semi- 

infinitely long open channel of constant depth have been investigated. Analy- 

tical solutions in closed forms were obtained for the surface wave profile and 

the net hydrodynaraic force acting on the plate. A porous-effect parameter and 

a Reynolds number associated with the flow passing through the plate were 

introduced. It was found that, when the distance between the plate and the 

channel end-wall is equal to a quarter-wavelength plus a multiple of half- 

wavelength of the incident wave, the reflected wave amplitude reduces to a 

minimum. Thus, the porous plate together with the fluid between it and the 

channel end-wall acts as a wave absorber or eliminator. The effect of nonlin- 

ear porous flow, governed by the square law of resistance, on the resulting 

surface waves was also studied. It is found that higher harmonic waves are 

generated by the nonllnearity. The results of these studies are reported in 

publications [3], [4] and [5]. 

3. Free-surface around a vertical cylinder 

Analytical and experimental investigations have been carried out to study 

the nonlinear free-surface flow around an Impulsively started vertical cylin- 

der [6-9]. The analytical solutions for the velocity potential and free- 

surface elevation were derived up to the third order by the small-time-expan- 

sion method. The hydrodynamic pressure acting on the cylinder wall was also 

obtained. It was found that, during the initial stage of this impulsive 

motion, no travelling free-surface waves are present. The fluid simply piles 

up on the upwind face and a reverse motion appears on the downwind face. In 

the experiments, measurements of the free-surface elevation ahead of the 

cylinder and pressure distributions on the cylinder were made in an open 

channel of constant water depth. The experimental results of the free-surface 

elevation agreed fairly well with the analytical solutions, particularly in 

the far field. The pressure distributions on the cylinder were also in satis- 

factory agreement with the theoretical predictions. 



4.  An optimal finite-difference method 

An "optimal" finite-difference (FD) method for two-dimensional potential 

flows was studied. The nine-point FD coefficients for Laplace equations were 

derived for rectangular cells with an arbitrary length-to-width ratio r. When 

the value of r^ is between 5 and 1/5, the present nine-point formula agrees 

exactly with the corresponding formula of Manohar and Stephenson, with a 

sixth-order truncation error. It reduces to the best nine-point formula of 

Blckley, Kantorovlch and Krylov, and Greenspan for square cells with an 

eighth-order truncation error. For r'^ greater than 5 or less than 1/5, the 

truncation error of the present formula is of the fourth order. The accuracy 

and performance of the present optimal FD formula was compared with the fi- 

nite-analytic (FA) formula of Chen and Li and an alternative FA formula with 

trigonometric boundary approximations [10, 11]. It is found that the present 

FD formula gives the best result regardless of the value of r. An example of 

potential flow in a channel with an abrupt change in its width is also given. 

B. Vlscous-Inviscid Interaction 

1.  Viscous effects on ship wavemaklng resistance 

The primary goal of this project was to incorporate viscous effects into 

the calculation of ship wavemaklng resistance. This has led to enhancements 

of both irrotationai-flow theory, and experimental and numerical work on ship 

boundary layers.  The Wigley parabolic ship form was selected for this study. 

Measurements of the boundary-layer characteristics of a 10-ft Wigley 

model at various Froude numbers were undertaken in the Iowa Towing Tank. 

These were required in a procedure for correcting wave-resistance calculations 

for viscous effects, proposed by Landweber in his David Taylor and Georg 

Welnblum Lectures, and would also serve as a data base for evaluating algor- 

ithms for computing ship boundary layers. This work resulted in a paper on 

the boundary layer on the hull near the free surface [12] and culminated in 

the Ph.D. thesis by A. Shahshahan [13] and an IIHR report by Shahshahan and 

Landweber [14]. It was found that the correction for viscous effects greatly 

improved the agreement with the "measured" values of the wave resistance. 



The aforementioned wavemaking-correction theory applies to a body with a 

centerplane singularity distribution. In order to use this theory, it was 

necessary to determine whether the Wigley form could be represented by a 

centerplane distribution. A new slender-body procedure, employing conformal 

mapping of ship sections, was developed to determine whether a centerplane 

distribution existed and to find it if it did exist [15, 16, 17]. It was 

found that the Wigley form did not have a centerplane distribution, but that a 

slightly modified form did. This new approach to slender-body theory has 

yielded the following additional results: 

a) Ellipsoids have an exact, closed-form, slender-body centerplane 

distribution. 

b) Ship forms with ogival sections have centerplane distributions. 

c) Computed values of ship wavemaking resistance, with or without the 

viscous correction, are in better agreement with measurements with 

the slender-body rather than the Michell thin-ship centerplane dis- 

tribution at Froude numbers up to 0.3. This result is in sharp 

contrast with that from the established slender-body theory which has 

been judged to be useless for wave-resistance calculations [15, 16, 

17]. 

d) Since the integral equation for a centerplane distribution is of the 

first kind, a numerical solution by iteration may not converge to the 

exact solution even when it exists. It was shown [17], however, that 

one iteration, employing the slender-body solution as the previous 

approximation, yields an improved approximation over the entire body, 

especially near the bow and stern where the errors of the slender- 

body solution may be large. 

2.  Free-surface flow ahead of a two-dimensional body 

This work is part of a continuing study of flow phenomena near a ship 

bow. At IIHR, the occurrence of a zone of separation ahead of surface pierc- 

ing bodies and vortex formation around and along the bow had previously been 

reported in an M.S. thesis by A. Shahshahan in 1981. Analysis of the equa- 

tions of viscous flow with the free-surface boundary conditions and the ef- 

fects of surface tension yielded a prediction of the location of a stagnation 



point ahead of a bow and, by applying an integral method, the characteristics 

of the free-surface boundary layer. This work is reported in the paper by 

Patel et al. [18]. Subsequently, this work was refined by Tang, who also 

developed numerical methods for the solution of both the steady and unsteady 

two-dimensional Navler-Stokes equations with the exact boundary conditions. 

He applied his computer programs to the case of solitary waves and several 

two-dimensional surface-piercing bodies. This work is reported in his Ph.D. 

thesis [19]. 

3.  Effects of waves on the boundary layer of a surface-piercing body 

This theoretical and experimental investigation was undertaken with the 

objectives of determining the fundamental aspects of the effects of waves on 

the boundary layer of a surface-piercing body and of developing a numerical 

method for calculating ship boundary layers for nonzero Froude numbers. The 

problem has been formulated in a rigorous manner in which proper consideration 

is given to the viscous free-surface boundary conditions. Order-of-magnitude 

estimates were derived for the body-boundary-layer/free-surface juncture 

region. These showed that this region is analogous to the flow in a stream- 

wise corner in that a consistent formulation requires the solution of higher- 

order viscous-flow equations. Numerical results have been obtained for both 

laminar and turbulent flow for the model problem of a combination Stokes- 

wave/flat-plate [20-23]. For this initial Investigation, the usual thin- 

boundary-layer equations were solved using a three-dimensional implicit fi- 

nite-difference method. The calculations demonstrated and quantified the 

influence of waves on boundary layer development, including the occurrence of 

wave-induced separation. Calculations were made using both small-amplitude- 

wave and more approximate free-surface boundary conditions. Both the exter- 

nal-flow pressure gradients and the free-surface boundary conditions were 

shown to have a significant influence. The former penetrates to a depth of 

about half the wave length and the latter is confined to a region very close 

to the free surface. Extensions of the theoretical work have been made for 

more practical ship forms. 

A towing-tank experiment has been performed for the purposes of document- 

ing wave effects on boundary-layer development and validating the aforemen- 

tioned theoretical work.  The model geometry was designed specifically to 



simulate the Stokes-wave/fiat-plate flow field. Detailed boundary-layer 

velocity-profile measurements have been made for three wave-steepness condi- 

tions. These experiments are the most detailed measurements, to date, docu- 

menting free-surface effects on boundary-layer development. The experimental 

and theoretical results are compared and discussed in [24]. 

4.  Viscous-lnviscid interaction with higher-order viscous-flow equations 

The partially-parabolic Reynolds equations have been coupled with an 

inviscid-flow solution procedure to develop a viscous-inviscid interaction 

method to be used for three-dimensional flows which cannot be treated by means 

of the classical boundary-layer equations (e.g., ship sterns, bodies at inci- 

dence. Interacting shear layers, and solid-solid and solid-fluid corners). 

The method has the following distinctive features: the governing equations are 

derived in nonorthogonal curvilinear coordinates with velocity components 

along the coordinate directions; an implicit finite-differnce scheme is used 

with the SIMPLER algorithm for pressure-velocity coupling; interaction between 

the viscous and inviscid regions is accounted for using the displacement-body 

concept; the inviscid flow is calculated using a conforming-panel, source 

panel method; the k-e model is used for turbulent-flow applications; and both 

algebraic and numerically-generated grids are used. The method has been used 

to evaluate the relative merits of interactive and global solution procedures 

by comparing the viscous-inviscid interaction solutions with large-domain 

solutions of only the viscous-flow equations. The method has been tested, 

thus far, for two-dimensional, axisymmetric, and simple three-dimensional 

flows [25-29]. 

C»  Development of a Numerical Method for Viscous Flow Around Ship Hulls 

Considerable effort has been devoted since the inception of this research 

program to the development of a general numerical method for the computation 

of the viscous flow around ship hulls. Initially it was decided to confine 

our attention to the flow over the stern and in the wake because it was gener- 

ally assumed that established boundary-layer methods could be used quite 

effectively for the flow at the bow and over the middle body, at least for the 

case without a free surface.  This led to the development of a method for the 



solution of the so-called partially-parabolic, Reynolds-averaged Navier-Stokes 

equations. The generality of the approach used in the construction of this 

method, however, was such that It could be readily extended to solve the 

complete Reynolds equations. The achievements of the former and the progress 

made in the latter are summarized in the following two sections. 

1. Stern and wake flows 

Following a critical review of experimental information on thick boundary 

layers over ship sterns and on ship wakes, Patel [30] identified a number of 

important physical and numerical features which needed to be addressed and 

resolved in order to develop a comprehensive method for the prediction of such 

flows for practical configurations. As a result, a fully-emplicit, time- 

marching numerical method was developed for the solution of the partially- 

parabolic Reynolds-averaged Navier-Stokes equations. This method incorporated 

state-of-the-art numerical grid-generation techniques, the novel finite- 

analytic discretization scheme for the transport equations of momenta and 

turbulence parameters, the two-equation k-e turbulence model with a special 

treatment of the wall boundary conditions, and a rapidly converging global 

velocity-pressure coupling algorithm. With this method, solutions could be 

routinely obtained on a minicomputer, such as a Prime 9950, in a matter of 

minutes. This method, which is described in detail in [31], has been applied 

to solve a variety of two-dimensional [31] and axisymmetric [31, 32] trailing- 

edge and wake flows. Its applications to three-dimensional bodies and ship 

forms are reported in [31, 33, 34]. The development of this time-marching, 

three-dimensional, partially-parabolic method also made it possible to under- 

take the separately funded research program in propeller-hull interaction 

(Contract N00014-85-K-0347). 

2. Fully-elllptlc method 

The partially-parabolic approximations are sufficient for a very large 

class of flows encountered in practice, including ship stern and wake flows. 

However, as a result of the generality that was incorporated in the formula- 

tion of our partially-parabolic method, it soon became evident that its numer- 

ical components could be readily generalized for the solution of the complete, 



fuiiy-elliptic, Reynolds-averaged Navier-Stokes equations without a signifi- 

cant penalty In computing times. The need for such fully-elllptlc solutions 

arises In the treatment of separating and separated flows. Considerable 

progress has been made In refining the physical components of the method 

towards the goal of developing a method suitable for the solution of the flow 

around complete three-dimensional bodies, e.g., the flow around a ship form, 

or the flow past a body with appendages. Among the major accomplishments are 

the following: 

a) The fully-elliptic capabilities of the numerical method have been 

demonstrated through its applications in two-dimensional [35] and 

axisymmetric [36] laminar flows. The latter reference describes flow 

separation on a spheroid and closure of the bubble in the wake. 

Applications to a variety of ship forms are described in [37]. 

b) There are many turbulent flows in which the popular wall-function 

approach of treating the boundary conditions on surfaces becomes 

unreliable. Among the most important are flows with regions of 

separation, and unsteady and three-dimensional flows. Previous 

attempts to formulate the so-called near-wall, or low Reynolds num- 

■ '    ber, turbulence models have not been particularly successful.  We 

' ■' ■ -■  have shown that this difficulty can be overcome in a very economical 

way by combining a simple turbulence model for the wall region with a 

more elaborate one for the flow farther from the wall.  Several ver- 

sions have been tested thus far [38, 39, 40, 41] together with the 

' '-   fully-elliptic numerical schemes.  The results indicate that a major 

hurdle in the accurate resolution of complex three-dimensional flows 

'  can be removed by such two-layer treatments of turbulence models. 

Other model combinations are also possible. 

c) The original partially-parabolic method, like many other modern 

numerical methods for three-dimensional flows, employed partially- 

transformed equations, namely those in which the velocity components 

are left in a convenient orthogonal coordinate system. Since this 

approach may prove restrictive for certain types of applications 

(e.g., in the treatment of strongly three-dimensional flows), the 

fully-transformed equations for three-dimensional laminar and turbu- 

lent flows in generalized nonorthogonal coordinates have been derived 

8 



[42]. The fully-transformed elliptic equations have been solved for 

a variety of two-dimensional flows with highly curved surfaces [40, 

43] in order to explore the advantages and difficulties before 

attempting more general three-dimensional flows. 

D.  Development of IIHR Research Facilities 

The CRAY-XMP supercomputer at the Naval Research Laboratory (NRL) has 

been used to perform some of the ship-stern calculations mentioned in the 

previous section. In addition, some computer time was obtained at the Illi- 

nois and San Diego Supercomputer Centers, sponsored by NSF, in support of our 

computational effort in ship hydrodynamics. A terminal dedicated to work 

requiring supercomputers has been installed at IIHR. The University of Iowa 

is now an Affiliate of the National Center for Supercomputer Applications 

(NCSA) and will soon acquire a node on the NSFNET or MIDNET. When this be- 

comes available, it will provide us with a high-speed access to several super- 

computers and greatly increase our computational capabilities in ship hydro- 

dynamics. 

The three-component, fiber-optics, LDA system, financed in part by the 

DoD-University Research Instrumentation Program (Grant No. N00014-84-G-0156) 

in support of the research being performed under the present contract, was 

delivered by TSI Inc. to IIHR in August 1986. The design of this unique 

system was the result of a close collaboration between IIHR and TSI 

engineers. This system, which has generated worldwide interest, is now under- 

going sytematic evaluations. When these tests are completed, it will be 

available to conduct a variety of experiments in three-dimensional flows. 

Construction of the Institute's 1.8 x 1.5 meter (6x5 ft) low^turbulence 

wind tunnel has been completed. The working section of this tunnel has been 

designed to facilitate the use of the three-component LDA system. Tunnel 

calibration is now in progress. 
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IV.  CONCLDDING REMARKS 

Research in ship hydrodynamics undoubtedly received a major boost as a 

result of the Innovative Accelerated Research Initiative (Special Focus) 

Program of ONR. The accomplishments in the research conducted have been 

summarized above. It is expected that the effect of this high level of activ- 

ity will be felt for a long time in the academic and research programs at The 

University of Iowa. 
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